KANSER TEDAVİSİNDE PERİTONEAL TEDAVİ MODALİTLERİ

Dr. Burhan SAVAS¹, Dr. F. Fevzi ERSOY²
Akdeniz Üniversitesi Tip Fakültesi, Onkoloji¹ ve Nefroloji² Bilim Dalı, ANTALYA

1955'teki Rose ve Palmer'ın öncü çalışmalardan bu yana giderek artan sayıda ilaç için peritoneal boşluk ilaç giriş yeri ve/veya uygulanın alanı olarak denenmiştir. Özellikle peritonanın sınırlı yapılının eğilimi gösteren over kanseri ve mezotelyoma gibi tümörlerde ve diğer tedavilerde dirençli malign asit olguların palyasyonunda intraperitoneal kemoterapi yaklaşımının etkinliği çeşitli çalışmalarda gösterilmiştir. Çeşitli kemoterapik ve biyolojik cevap düzenleyiciler için intraperitoneal yolda ön ön zola karşı sağlanığını tam kaynak kinetik yararlanma avantajları son senelerde hedeflenmiştir. Ayrıca kanser kemoterapisi içinde çok ilaca dirençlı kemoterapiyi ve ciddi biyolojik cevap düzenleyiciler için intraperitoneal yolda yeni ufkular aç.RemoveEmptyEntriesini desteklemektedirler.

Anahtar kelimeler: Intraperitoneal kemoterapi, over karzinomu, mezotelyoma, malignansi, çok ilaca direnç

Peritoneal Therapy Modalities in the Treatment of Cancer

After the initial studies by Rose and Palmer in 1955, a wide variety of therapeutic drugs are administered into the peritoneal cavity as an entry to the body and as a localized treatment. The rationale for this approach is provided in many studies for at least in malignancies with tendencies to spread along peritoneal surfaces such as mesothelioma and ovarian carcinoma. Similarly, intraperitoneal chemotherapy was shown to be effective in the palliation of intractable malign ascites. The potential pharmacokinetic advantage of intraperitoneal versus intravenous administration has been demonstrated for increasing number of chemotherapeutics and biological response modifiers in the recent years. Furthermore, various advantages of drug resistance modifiers with peritoneal administration has also been shown. These observations may lead to new insights on combining chemotherapy with drug modifiers, biological response modifiers and intraperitoneal administration.

Key words: Intraperitoneal chemotherapy, ovarian carcinoma, mesothelioma, malignancy, multidrug resistance

İntraperitoneal kemoterapi ile periton boşluğundaki ilaç konsantrasyonunu maksimize ederek periton boşluğunun yüzeyindeki dokular hedeflenmek istenmekle, karsineriyle bölgede direnç oluşmasını önleyecek kadar yüksek doza erişebilirken, sistemik dolaşmındaki ilaç dozunu non-toksik

Gerek kemoterapi ajanlarında, bunların farmakodinamiklerinde elde edilen yeni veriler ve kemoterapiye dirençli kanser hücrelerinin mekanizmalarının araştırılmasını gerektiği bilgiler; gerekse peritoneal dializ ve ilaç uygulamanın teknolojisinde sağlanan gelişmeler son 20 senede peritoneal kemoterapi yaklaşı- minın giderek gelişmesini sağlamıştır. 1978’den bu yana yapılan çalışmalar ile küçük hacimli dirençli over kanserlerinde İp kemoterapinin sistemik kemoterapiye üstün- lüğü gösterilmiştir(1,8). Benzer olumlu sonuç- lar tümör çapları 2 cm’in altında olan 10 peritoneal meozotelyom hastaları da ip kemote- rapi ile elde edilmiştir(9). Kolon kanserlerinin adıvvan ip-intravenöz (iv) tedavi- sinin sadece iv adıvvan kemoterapiden daha üstün olduğuna ilişkin çalışmalar da umit verici gözümektedir(10). Buna karşın diğer bazı kanserlerinın intraperitoneal kemoterapi ile tedavilerindeki tartışmalı noktaları çözümleyecek kontrollü klinik çalışmaları henüz yeterli; noktada değildirler. Günümüz- de intraperitoneal tümör yayılımının 3 mm in- celiğine de tanımlayabilen manyetik rezo- nansla görüntüleme(11) ve 5 mm’lik lezyon-ları tanımlayabilen bilgisayardan tomografi gibi blueyiilen görüntüleme teknikleri de ip kemote- rapiının daha erken ve basarılı uygulamaların sağlayabileceği gibi görünmektedir.
Peritoneal temizlenmenin ("clearance") çoğunluğunun genellikle portal sistem aracılığı ile etkilenmesine (1, 12) özellikle küçük moleküllü ağırlıklı bileşiklerin (13) ek olarak karaciğer yüzeyinde yapılan doğrudan absorbsiyonun sistemik dolaşma erişebilen ilaç miktarının çok düşük olması neden olacağını düşünülmektedir (3). Buna karşın ip 5-fluorouracil uygulanan 4 hastanın içinde verilen ilacı önemli bir bölümü karaciğer altayarak ("bypass") absorb edildiği gözlemliştir (14). Bu durum periton yüzeyinin %15-20’sinin karaciğere portal olmayan dokular çevremesine bağlı olduğu düşünülmektedir (3). Bütün bunlara karşın ip verilme ile iv verilme orana 1-2 FU için belirli bir orana alan doz yoğunluğun avantajı (Tablo 1) klınikte 1.5 gr ip dozun 1 gr iv dozdan daha az hematolojik toksisite oluşturup gösterilmiştir (15).

2. Tümör hücrelerinin artsız ilaç maruz kaldı: Cyclosporin A gibi molekül ağırlığı (1202.6 g/L) peritoneal klerensi yarıştıracak kadar yüksek olan ilaçlarda belirginir. Buna karşın periton yüzeyindeki artsız ilaç teması dokunun derin tabakalarında azalmaktadır. Böylece 5-FU için 0.6 mm derinlikte %10’a kadar düşmektedir (3).

1 ve 2. maddelerin sonucu olarak peritoneal kullanımlar ile çeşitli kanser ilaçlarını için sağlanabilecek yarar oran Tablo 1'de gösterilmiştir.

3. Palyasyon: Mitkarsa fazla ve sık parazentez gerektiren asitlerde intraperitoneal kemoterapi ile asit oluşumunun tekrarlama-ması (tam palyasyon), yada asit hacmi ve parazentez sıkışmasına azalma, başaklardaki odemde azalma (kısımlı palyasyon) sağlanabilmektedir (12).

4. Neoplastik anjiogene: Küçük moleküllerin peritonun geçişlerinin a) Batın içi or-ganlardaki ("viscera") kan kapiller permeabilirseti, b) Dokudaki kilcal damar yoğunluğu, c) Peritoneal sıvıya maruz kalın batın içi or-ganların yüzey alanı, d) Periton sıvısı ve kandaki serbest solute yoğunlukları ile oranlı olduğu bilinmektedir (9). Dolayısıyla neoplas-tik dokularındaki artsız damarlanmanın ip kemoterapi etkinliğini artırabileceği düşünülmektedir.

METODOLOJİ
Peritoneal kateter küçük cerrahi müdahale ile yerleştirilir. İlk kez (kalıcı) yada tek kez (geçici) Tenckhoff kateteri uygulanabilir (12, 49). Daha sonra kateter çıkış yerinde ("exit site") adaptöre bağlanır. Arzulanan sistemde ("disconnect" yada standart) sürekli ayaktan periton dializi (SAPD) adaptör takılması tercih edilir. Tedavi öncesi karın boşluğu dren edilebilir. İntraperitoneal olara- rak uygulanacak ilaç SAPD teknikli kullanımlarında 2 litre serum fizyolojik, SAPD teknolojisi kullanılmadı ise %1.36 dekstroloz SAPD solusyonu içerisinde uygulanabilir.

Peritoneal boşlukda kemoterapötik ieren infüzyon sıvısı dört saat gibi süre bek-letildikten sonra Tenckhoff kateter aracılığı ile periton boşluğu tamamen dren edilebilir (12), yada SAPD adaptör kapatılarak verilen ilaçlar peritoneal kavitede bırakılabilir (49).

Kateter hastada bulunduğunu sürekli ka-teter bakım SAPD’deki prensiplere uygun olara- rak yürütülür. SAPD hemşiresi bu bakımda hastaya eğilimi rolünü üstlenir.

İntraperitoneal kemoterapide kullanılabilecek ilaç olarak günümüzde dek yapılmış çalışmaları çoğunuşunda cisplatin tek başına yada etoposide, mitoxantrone veya thiopeta ile kombin olarak kullanılmıştır (6). İp kullanılan- daki belirgin farmakolojik avantajı gösteril-miş olan paclitaxel de iyi bir aday olarak be-lirmektedir (16).

Sonuç olarak intraperitoneal kemoterapi
Tablo I. Intraperitoneal Uygulanan Yararlılığı

<table>
<thead>
<tr>
<th>İlaç</th>
<th>Zirve Peritoneal sıvı düzeyi/kan düzeyi oranı</th>
<th>Referans</th>
</tr>
</thead>
</table>
| 5-FluoroUracil | 3.5 mM'de 124
2.0 mM'de 461
(1.5 g/l litre=1.5 mM) | 35
35 |
| Carboplatin | 10-18 | 36,37 |
| Cyclosporin A | 1000 (ip 20 mg/kg)
100 (ip 1 mg/kg) | 12 |
| Dipyridamole | 47-439 | 26 |
| Cisplatin | 10-26
(ip verilende iv'ye oranla peritoneal tümör dokusunda yüzeyden 1.5-2.2 mm'e kadar (cisplatin) 2 kat fazla; (3) | 36,27 |
| Doxorubicin | 474 | 36,38 |
| Etoposide | 2.8
25-29 | 9
26 |
| Hexanethymelamine | O.Y. | 39 |
| İnsulin | 200-300 | 40 |
| Interferon-alfa | Ö.Y. | 41 |
| Interferon-gama | Ö.Y. | 42 |
| Interleukin-2 | Ö.Y. | 43,44 |
| Melphanal | Ö.Y. | 45 |
| Methotrexate | 92 | 36,46 |
| Mitomycin C | 71 | 36 |
| Mitoxantrone | 620 | 36,19 |
| Paclitaxel | 600 | 16 |
| Suramin | 2.4 | 23 |
| thioTEPA | Ö.Y. | 47 |
| Vancomycin | 10 mg/kg'da 3.9 | 48 |

Ö.Y. = Ölçülemeymiş
uygulamalarının onkoloji kliniği ve SAPD programlarının işbirliği ile yürütüldüleri komplikasyonların azaltılması ve başan oranlarının artırılması yönünden yararlı olacaktır.

ETKİNLIK

Küçük hacimli peritoneal mezotelyomal ve sistemik tedaviye dirençli over kanserlerinde peritoneal kemoterapinin etkinliği gösterilmiştir\(^\text{(1,8,9)}\). Hastanemizdeki cisplatin ve paclitaxel içeren 3 ay sistematik kemoterapı rejimi ile remisyona girmemiş olan over karsınomu bir hastanın intraperitoneal cisplatin+etoposide uygulanmasıyla tam remisyona girdiği gözlemştir\(^\text{(17)}\). Buna karşın ip platin uygulanlarında daha önceden sistemik platin uygulamasına dirençli iki kalıntı ("bulky residual") over tümörü yada peritoneal mezotelyomal hastalarda ise çevap oranları düşük bulunmuştur\(^\text{(9,18)}\). Son zamanlarda yapılan çalışmalarla eded edilmeke olan sonuçlar ise yeni yaklaşımlar ile ip kemoterapinin sadece asit palyasyonu ve pazıl, yaşam süresinde de iv kemoterapiye oranla daha etkili olabileceği düşünülmektedir\(^\text{(12,15,20,49)}\).

KOMPLIKASYONLAR

1) Peritoneal kateter tüneli ve/veya çıkış yeri enfeksiyonu.
2) Peritoneal kateter fonksiyon bozukluğu ("catheter malfunction")
3) Tıkanma yada rotasyon.
4) Periton giris yeri fonksiyon bozukluğu ("port malfunction").
5) Cilt altı şişme, karın cildi amfizemi ("insufflation").
6) Hematom/kanama.
7) Kolon perferasyonu: Tek kullanım kateterlerde %24’e dek gözlenebilir\(^\text{(21)}\).
8) Karın içi fibrozis veya yapısallık.
9) Abdominal ağr: En sık görülen komplikasyondur. Yan kahri port sistemlerinde %8-23’e, tek kullanım kateterlerde %5-68’e dek gözlenebilir\(^\text{(21)}\).
10) Bulantu ve kasma.
11) Kemik iliği baskılanması: Lökopeni, anemi, trombositopeni.
12) Renal yetmezlik.
13) Hipertansiyon.
14) Diğer: Ototoksisisite, nöropati. Intraperitoneal kemoterapı uygulamalarında çıkış yeri ve kateter komplikasyonlar bazı merkezlerde %25-30 oranına erişebilmek ve ip kemoterapı esnasında yanıma, düşük akım hızı yada akamama, karın ön duvarında cilt alt amfizemi gibi belirtilere neden olabilmektedir\(^\text{(12,22)}\). Ip kemoterapide gözlenen kemik iliği baskılanması gibi sistemik yan etkiler ise aynı ilacların intravenöz uygulamalarında gözlenen siklık ve şiddeti çok altındadır\(^\text{(12,15,22)}\).

İNTRAPERITONEAL KEMOTERAPIDE YENİ YAKLAŞIMLAR

1) Sistemik toksisiteleri nedeniyle etkili dozlardaki kullanılmayan büyüme faktör inhibitörlerinin intraperitoneal kullanımında yeterli dozlardaki kullanılabilmeleri. Lipid büyüme faktör LPA’nın inhibitöri olan suraminin ip kullanım ile peritoneal mezotelyomal tedavisinde eded edilen başarı bu konuda güzel bir örnek\(^\text{(23)}\).
2) İkinci dirençli (CILD) değişiricileri ("modifiers") ile ip kemoterapı kombinasyonu. Kanserli hastaların sıkıkla ölümüne neden olan kemoterapiye direnç fenomenini yenmeyi sağlayan kemosensitizlerinin kullanımda tümör hücrelerinin kemoterapiye dirençlerini kırmak için gereken dozların ciddi sistemik yan etkilere yol açması en önemli engeldir. Cyclosporin A (CsA) gibi intraperitoneal ilaç kullanım avantajlarına sahip kinyasalların ip kemoterapie eklemeleri çok umut verici gibi görünmektedir\(^\text{(12)}\). CsA intraperitoneal sivi düzeyi/kan
düzeyi oran 1000 kata kadar çıkabilmekte olup bu düzey ip kemoterapiden sonra en az 12 saat devam etmektedir. 100 kat yükseklik ise ip uygulanmadan sonra en az 43 saat sürmektedir. Klasik ÇİD (MDR1) blok için gereken CsA düzeyi 1 μg/mL, cisplatin dirençini kırmak için gereken CsA düzeyi 2-5 μg/mL[24] iken intraperitoneal uygulanmada 34.6 mg/kg CsA verilebilmektedir[12]. Bu dozda ip CsA konsantrasyonu 1.2 mg/mL ye ulaşabilmektedir. Platin grubu kemoterapötiklere karşı olan direncin yenilebilmesinde CsA kullanılıbilmesine ek olarak MDR1 fenomeni yoluya kendisine karşı direnç gelişebilir[25], ve over kansinomlarında etkiliği bilinen paclitaxel direncine karşı da CsA kullanılamalı olasılığı bu yaklaşımdan potansiyelini güvende bulunmaktadır.

Benzer şekilde MDR1 fenomeni yoluya kendisine karşı direnç gelişen ajanlar arasında bulunan etoposide[25] direncine karşı dipiridamole kullanılabilecek etkinliği etoposide sitotoksitesini 5.5 kat artırır dipiridamole konsantrasyonu olan 20 μM'ın 1.5-3.5 katının ip uygulanmada elde edilebileceği gösterilmiştir[26]. Eşzamanlı plazma dipiridamole konsantrasyonu ise sadecе 0.2-0.7 μM olmuştur.

3) Intraperitoneal kemoterapi uygularken eszamanlı sistemik antitoksik ilaçlar kullanımı ile kemoterapi toksitesinin azaltılması. İp cisplatin uygulanmasına bir yandan sistemik ilaç seviyesinin 10-25 katı düzey elde edilip, ayrıca sistemik cisplatin etkisinin eşzamanlı iv thiosulfate verilmesiyle bloke edilebilmesi bu modaliteye güzel bir örnek tırt[9,27,28].

4) Intraperitoneal kemoterapi ile hipertenminin birlikte kullanımı ile lokal kanser kontrolünün artırılması[29], yada ip ilaç verilip sırında hastanın yatar pozisyonda tutulmasıyla sistemik doşama geçiş süresinin uzatılması[30].

5) Eşzamanlı sistemik+intraperitoneal kemoterapi uygulamasıyla oluşan sistemik kanlı tümör hücrelerinin daha iyi kontrolu ile birlikte peritoneal kavitedeki tümör nodüllerine daha etkili ilaç girişini ("penetration") sağlama[12,20].

6) Intraperitoneal yoldan kanser hücrelerindeki antijenlere karşı geliştirilmiş monoklonal antikorlar (MAK) kullanımı ile karn içi kanserlerinin tedavisi, özgün kanser hücreleri eliminasyonu sağlayacağı düşünülen, oldukça ilgi uyandıran bir kavramdır. Bu antikorlara toksik maddeler (veya radioaktif izotoplar) bağlanmasının tümör heterojenitesinin aşılabileceği ve tedavi etkinliğinin artırabileceği düşünülmektedir. MAK'ların asi: sıvı kontrastın tümör hücrelerine kolayca erişebildiği gösterilmiş ise de[31]; MAK'ların dokudaki kanser hücrelerine erişimlerini gerek yüksek molekül ağırlığı, gerekse bağlanma bölgesi engelli ("binding-site barrier") nedeniyle ciddi biçimde engellenmekte[32,33].

7) Intraperitoneal radioaktif izotopların kullanımı. Özellikle toksitisitesi sınırlı olan ve 3-5 mm maksimal doku içine girme kapasitesine ("penetration"), ve 14.3 gün bıırak yarım ömre sahip bir beta ışın yayıcı olana kromik fosfat (P-32) iyı bir aday gibi görünmektedir ve over kanserlerinde 20 yıl aşkın bir deneyim birikimi olumluştur. Intraperitoneal P-32 uygulamalaryla evre I ve II over kanserlerinde düşük relaps oranları elde edebilmek, ileri evrelerde bu başarsının ulaşılamamıştır[5,34].

SONUÇ
Intraperitoneal tedavi ilkelerinin özellikle gastrointestinal kanserler, over kanseri, ve mezotelyomalarında kemoterapi ve/veya biyolojik tedavi protokolleri ile birleştirilmesinin etkili olabileceği giderek artan sayıda çalışma desteklemektedir.
Hücreler arası madde alışverişini ve hücrelerin kendilerini kıyısal saldırlardan korumalarını sağlayan temel mekanizmaların anlaşılmasını, ve bu mekanizmaların bağışıklık sistemi gibi diğer sistemler ile olan ilişkilerinin araştırılmasından elde edilecek yeni veriler kemoterapinin kemosensitizörler ve veya biyolojik tedavi modaliteleri ile kombin edilmesi gibi yeni ufuklar açılabilecektir. Gerek temel bilimler araştırmalarının bu konudaki sonuçları; gerekse SAPD ve onkoloji kliniklerinin yakın işbirliği klinisyenlerin daha az toksk, ve daha etkili kanser tedavileri oluşturabilmelerini sağlayabilecektir.

Geliş tarihi: 30.10.1997
Yayın kabul tarihi: 12.11.1997
Yayışma adresi:
Dr. Burhan SAVAŞ
Akseniz Üniversitesi, Tıp Fakültesi,
Onkoloji Bilim Dali
ANTALYA

KAYNAKLAR

