Temel Klinik Araştırma Düzenleri: Paralel Gruplu Araştırmalar ve Çapraz Gruplu Araştırmalar

Dr. Oktay ÖZDEMİR

Omega Araştırma Organizasyon Eğitim Danışmanlık Ltd. Şti. Ankara

✔ Bu yazında temel klinik araştırma yöntemleri özetlenmiştir.
Anahtar kelime: Klinik araştırma yöntemleri

✔ Basic Clinical Research Systems: Parallel Group Studies and Cross-Over Group Studies
Basic clinical research methods are summarized in this paper.
Key word: Clinical research methods.

İki ya da daha fazla hasta grubunun bir çalışmının parçası olarak, fakat farklı gruplarda yer aldığı çalışmalarına bağımsız kontrollü araştırmalar (paralel gruplu araştırmalar) denir. Örneğin iki farklı tedavinin etkilerinin karşılaştırılması amacıyla yapılan bir çalışmaya alınan 60 hastadan 30’una A ilaç, 30’una B ilacının verilmesi durumunda bu çalışma, paralel gruplu çalışma olarak adlandırılır (Şekil 1).

Öte yandan çalışmaya alınan tüm hastalara farklı zamanlarda tüm tedavilerin verilmesi de mümkündür. Yukarıdaki örnekte çalışmaya alınan hastalardan 30’una birer ay süreyle önce A, sonra B ve diğer 30 kişiye önce B, sonra A tedavisinin verildiğini düşündür. Bu durumda bu çalışma çapraz gruplu (cross-over) çalışma olarak adlandırılır (Şekil 2).

Paralel ve çapraz çalışma dizeni, tipteki ilaç etki ve yan etki çalışmalarında ve tanışal işlemlerin karşılaştırılmasında en sık kullanılan araştırma yöntemlerdir. İkisinin kendine özgü üstünlük ve sakınçaları vardır.

Paralel Gruplu Araştırmalar
Paralel çalışmalarda farklı kişilerde farklı ilaçlar verilip, gruplar arasında fark olup olmadığı incelenir ve eğer fark varsa, bunun nedeninin ilaçlar arasındaki farklılıkların kaynaklandığı sonucuna varılmaya çalışılır. Bu sonucun doğru ve güvenilir olabilmesi için farklı ilaç gruplarına alınacak kişilerin ilaca yanıt etkileyecek diğer etkenler açısından farklı olmamasının sağlanması gerekir.

Farklı tedavi gruplarına alınan hastalar, tedavi verilmeden önce yaş, hastalığın ağırlığı, eşlik eden diğer medikal sorunlar gibi pro笥za etki eden diğer etkenler açısından farklılık gösterirse, tedavi sonuçlarının değerlendirilmesinde taraf tutma ya da önyargı (bias) olur. Bu etkenlere "prognostik etkenler" ya da "kontrol değişkenleri" (covariate, confounding variable) adı verilir. Prog sostik etkenlerin gruplarda farklı dağılım göstermesi ise dengesizlik (imbalance) olarak tanımlanır.

Grupların prognostik etkenler açısından istatistiksel olarak farklı olmasının gösterilmesi, grupların dengeli olduğunu kanıtlamaz. Tedavi grupları arasında istatistiksel olarak öneri farklı olmamasına dayanarak, grupların gerçekten benzer olduğunu kabul
Şekil 1. Paralel gruplu araştırma düzeni. Aşağıdaki kalın ok çalışmanın yönünü ve "0" çalışmanın başladığı dönemi temsil etmektedir.

Şekil 2. Çapraz gruplu araştırma düzeni. Aşağıdaki kalın ok çalışmanın yönünü ve "0" çalışmanın başladığı dönemi temsil etmektedir.
etmek doğru değildir. Örneğin iki gruba 25'erden 50 hastanın randomize edilmesi sırasında cinsiyet açısından bazı erkek 15 kadın, diğer gruba ise bunun tam tersi sayıldarda denek seçilmiştir olduğu takdirde, hesaplanan p değeri 0.20 olacaktır. Yani iki grup arasında cinsiyet açısından istatistiksel olarak önemliliği zayıf olduğu halde, iki grup cinsiyet açısından dengesiz olacağını söylemnizdir. Önemli olan, grupler arasında dengesizliğin istatistiksel önemli değil, klinik önemidir.

Prognostik etken dengesizliğinin üç çözümü vardır:
1. Randomizasyon.
2. Tabakalı analiz.
3. İstatistik analizinde asıl etki (yani tedavi) dışındaki etkenleri de (yani diğer prognostik etkenleri de) dikkate alan bir model seçmeli.

Bu üç yöntem ayrı ayrı ya da daha sık olarak birlikte kullanabilir.

Randomizasyon

Denek sayısının az olduğu bir çalışmada basit randomizasyon tek başına dengesizliğin azalmasını yeterli olmayabilir. Bu durumda randomizasyonu şu iki yöntemden biri ya da her ikisi birlikte ekenmelidir:
1. Tabakalandırma,
2. Bloklama.

Araştırmacı, önce hastaları bir ya da daha çok prognostik etkene göre sınıflandırır (tabakalandırır), daha sonra, her tabakaya bağı olarak belirlenmiş (ve genellikle eşit) sayıda hasta geçrek şekilde hastalari seçer (bloklar). Örneğin her iki erkek hastadan birini bir gruba, diğerini diğer gruba seçmek şekilde bir randomizasyon şeması kurar ve kadınları da ayrı şekilde seçerse, çalışma grupları cinsiyete göre tabakalandırılmış ve ikili gruplar halinde bloklanmış olur. Örneğin ilk erkek hastayi yazi-tura ile A grubuna seçiktiken sonra gelen erkek hasta zorunlu olarak B grubuna alınır. Uçüncü erkek hastada yine yazi-tura ile ilac seçimi belirlenir. Aynı işlem kadınlar için de benzer şekilde yapıldığında, tabakaların birleştirilmesi ile gruplar ken-
diliğinden dengeli olur. Yazı-tura yerine istatistik kaynak kitaplar ya da bilgisayarlardan elde edilebilecek rastgele sayılar tablosundan yararlanarak da randomizasyon yapılabilir. Tablo I'de cinsiyetin tabaka değişkeni olduğunu ve blokların ikişer ikişeden oluştuğu bir randomizasyon şeması gö AppRoutingModule

Tablo I. Cinsiyet Açısından Tabakalandırılmış ve Her Bloktaki İkii Hasta Oylak Üzeri Bloklama Yapılmış Bir Çalışmadaki Randomizasyon Şeması.

<table>
<thead>
<tr>
<th>Tabaka</th>
<th>Blok</th>
<th>İlaç</th>
<th>Plasebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek</td>
<td>I</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Kadın</td>
<td>III</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabakalandırmaya mutlaka bloklama da eşlik etmeliidir. Aksi takdirde basit randomizasyon ile bloklama yapılan tabakalandırma arasında, gruplar arasındaki dengeyi sağlanması açısından fark yoktur. Ama tabakalandırma olmasının bloklama yapılabilir. Örneğin tek amaç gruplarda denek sayısının eşit olması ise, tek başına bloklama yeterlidir.

Eğer gereğinden fazla kategori kullanılanlarsa, araştırma alınacak hasta sayısının çok artması ve buna rağmen gruplar arasındaki dengeyi tam olarak sağlanamaması gibi sức dục ortaya çıkabilir. Örneğin "yaş" tabakasının kategorileri "0-4, 5-9, 10-14, 15-19, ..." gibi birer yıl ilk ve "vertebral sayısı" tabakasının kategorileri "1-3, 4-6, 7-9, ..., " gibi üçer vertebral olarak belirlendiğini ve "skolyoz nedeni"nin ise "doğumsal, edinsel" olarak iki kategoriden oluştuğını varsayalım. Operasyon bölgesindeki vertebral sayısı "7-9" grubuna giren 6 yaşında (yani 5-9 yaş grubuna giren) doğumsal skolyozu olan bir hasta desmopressin grubuna alındığında, plasebo grubuna da vertebral sayısı ve yaş benzeri olan
doğumsal skolyozlu bir hastanın alınması gerekecektir. Aksi takdirde gruplar, prognostik etkenler açısından dengeli olmaları ve tabakalardırma işe yaramamış olacaktır.

Öte yandan tabakaların kategorilerinin fazla geniş olması da sakınçalıdır. Örneğin "vertebra sayısı" tabakasının kategorileri "1-10 ve >10 vertebra" olarak belirlenirse, 2 vertebrauya müdahale yapacak bir hastaya 10 vertebrauya müdahale yapılacak bir hasta aynı kategoride ele alınacak ve kanama miktarma vertebra sayısı etkisi açısından bu iki arasında fark olmadığı varsayılacaktır.

Hem tabaka sayısı, hem de tabakalardaki kategori sayısı artıkça araştırmının yürütülmesi ve gruplara dengesinin sağlanması güçleşir. Bu nedenle prognostik etkisi belirgin olmayan değişiklere göre tabakalandırma yapılmasından kaçınılmazı uygun olur. Aynı şekilde tabakaların kategorilerinin alt ya da üst sınırlarının belirlenmesinde de prognostik açısından aralarda fark olduğunu varsayılan sınırlar seçilmelidir. Örneğin alt sınırunun yolu infeksyonu gelişmesinde yaşın etkisine göre grupların benzerliğini sağlamak için hastaların "45'in altında - üstünde" olarak iki kategoriye ayrılmış yeterli olacaksa "20-24, 25-29, 30-34, ..." gibi dar kategoriler oluştururuz gerek yoktur.

Tabakaların kategorilerinin eşit genişliklerde olması gerekmek. Örneğin özellikle ilk yaşta ve 60 yaşından sonra daha ağır seyretilen ve bu nedenle ilaca yanıt alınan bu yaş gruplarında farklı seyir gösteren bir hastalık için yaş açısından tabakalandırma yapılıacağı zaman kategoriler "0-1 yaş, 2-20 yaş, 21-60 yaş ve >60 yaş" olarak belirlenebilir. Önemli olan kategorilerin alt ya da üst sınırlarının, hastaların prognoz açısından farklı olmalarını sağlamak için.

<table>
<thead>
<tr>
<th>Yaş</th>
<th>Vertebra sayısı</th>
<th>Skolyoz nedeni</th>
<th>Desmopressin</th>
<th>Plasebo</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>1-5</td>
<td>Doğumsal</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6-10</td>
<td>Doğumsal</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>Doğumsal</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20-49</td>
<td>1-5</td>
<td>Doğumsal</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6-10</td>
<td>Doğumsal</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>Doğumsal</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>49</td>
<td>1-5</td>
<td>Doğumsal</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6-10</td>
<td>Doğumsal</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>Doğumsal</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edinsel</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Toplam</td>
<td></td>
<td></td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

etkenler açısından homojen altgrupların analizinin ayrı ayrı yapılmamasıdır. Bu yöntemle çalışmanın gücü azalır, ama ciddi dengesizlik nedeniyle işe yaramayacak bir çalışmada yapılaması gereken budur.

Tabakalı analizin nasıl yapıldığını şu örnekte incelleyelim:

β-bloker ve kalsiyum antagonistlerinin anstabil anjına pektoriste miyokard infarktus (MI) gelişmesini önlemek üzerindeki etkilerinin karşılaştırılması amacıyla düzenlenen bir çalışmaya alınan 80 hasta ilk gruba aynılıyor ve bir gruba β-bloker, diğer gruba kalsiyum antagonisti veriliyor. Tedaviye yanıtın farklı cinsiyetlerde farklı olmayağı varsayıldığı için, hastaların ilaç gruplarına ayrılmaması cinsiyet, tabaka değişkeni olarak kullanılmıyor. Tedaviye yanıt için ilaç başlangıktan sonra 6 ay içinde hastaların ne kadarına MI geçirdiği görülüyor.

Tablo III’ten Tablo VIII’e kadar yer alan tablolarda bu çalışmadaaki verilere ilişkin çapraz
Tablo III. İki Tedavi Grubunda MI Geçiren Hasta Sayılarının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th>Miyokard infarktüsü</th>
<th>+</th>
<th>-</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-blokör</td>
<td>21</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>Kalsiyum antagonisti</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Toplam</td>
<td>51</td>
<td>29</td>
<td>80</td>
</tr>
</tbody>
</table>

Tablo IV. İki Tedavi Grubundaki Deneklerin Cinsiyete Göre Dağılımının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th></th>
<th>Erkek</th>
<th>Kadın</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-blokör</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Kalsiyum antagonisti</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Toplam</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Tablolar görülmektedir. β-blokör grubunda 21, kalsiyum antagonisti grubunda 30 hastanın MI geçirdiği gözleniyor ve ki-kare analizi ile β-blokör grubundaki MI oranının kalsiyum antagonisti grubundan istatistiksel olarak önemli derecede az olduğu görülüyor (p=0.03) (Tablo III).

Ancak gruplardaki deneklerin cinsiyetlere göre dağılıının farklı olduğu görülüyor. β-blokör grubunda 10 erkek, 30 kadın, kalsiyum antagonisti grubunda 30 erkek, 10 kadın var (p<0.001) (Tablo IV). Bu nedenle farklı cinslerde ilaçların etkilerinin farklı olabileceğini, ya da verilen ilaç ne olursa olsun farklı cinslerde hastalığın seyrinin farklı olabileceğini gibi sorular akla geliyor. Gerçekten de iki farklı tedavi grubundaki denekler cinsiyet ve prognoz arasındaki ilişki açısından incelendiği zaman her iki ilaç grubunda da erkeklerde MI oranının daha yüksek olduğu saptanyor (erkeklerde p=0.04, kadınlarda p<0.001) (Tablo V ve VI).

Acaba β-blokör grubunda infarktüs oranıın düşük olması nedeni ileçin daha etkili olmasın mıdır, yoksa bu grupta hastalığın daha kötü seyrettiği anlaşılan cinsen, yani erkeklerden daha az denek bulunması mıdır? Acaba her iki tedavi grubundaki deneklerin cinsiyet açısından dağılımı benzer olursa, sonuç yine β-blokör lehine mi bulunacaktır? Bu sorunun çözümü için tabakalı analiz yöntemi kullanılabilir. Infarktüs oranlarının, tedaviye yanıt yada hastalığın seyrini açısından farklı olan altgruplarda, yani erkeklerde ve kadınlarda tedavi gruplarnadaki ayrı ayrı incelenmesi grupların cinsiyet açısından dengesi olmasının neden olduğu yorumlama güçlüğünü ortadan kaldıracaktır. Gerçekten de hem erkeklerde (p=0.41) (Tablo VII), hem de kadınlarda (p=0.46) (Tablo VIII) hangi ilaç

Tablo V. β-Blokör Grubunda Farklı Cinslerde MI Geçiren Denek Sayılarının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th>Miyokard infarktüsü</th>
<th>+</th>
<th>-</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Kadın</td>
<td>13</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Toplam</td>
<td>21</td>
<td>19</td>
<td>40</td>
</tr>
</tbody>
</table>

Tablo VI. Kalsiyum Antagonisti Grubunda Farklı Cinslerde MI Geçiren Denek Sayılarının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th>Miyokard infarktüsü</th>
<th>+</th>
<th>-</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkek</td>
<td>27</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Kadın</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Toplam</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

277
Tablo VII. İki Tedavi Grubunda MI Geçiren Erkek Denek Sayılarının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th>Miyokard infarktüsü</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>β-blokör</td>
<td>8</td>
</tr>
<tr>
<td>Kalsiyum antagonisti</td>
<td>27</td>
</tr>
<tr>
<td>Toplam</td>
<td>35</td>
</tr>
</tbody>
</table>

kullanılırsa kullanılsın, prognozun farklı olmayacağını göstermektedir.

Bu örnekte olduğu gibi çalışma bittikten sonra altgrupların belirlenmesine "sonradan-tabakalandırma" (post-stratification) adı verilir. Çeşitli etkenlerin prognostik önemini derecesinin belirlenmesinde sonradan-tabakalandırma yararlıdır, ancak bu yöntemde iki sorun vardır:

1. Çalışmanın gücü azalır ve bazı tabakalarda denek sayısı çok az olacağı için istatistik analiz sonuçları güvenilir olmayabilir.

2. Gruplar arası karşılaştırma sayısını artıracak için "istatistiksel önemlilik enflasyonu" riski vardır.

Tablo VIII. İki Tedavi Grubunda MI Geçiren Kadın Denek Sayılarının Gösterildiği Çapraz Tablo.

<table>
<thead>
<tr>
<th>Miyokard infarktüsü</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>β-blokör</td>
<td>13</td>
</tr>
<tr>
<td>Kalsiyum antagonisti</td>
<td>3</td>
</tr>
<tr>
<td>Toplam</td>
<td>16</td>
</tr>
</tbody>
</table>

çık라 doğru bir anlatımla, bu araştırma aynı sayıda hasta ile ve aynı koşullarda 100 kez yapılrsa, iki araştırında 12 araştırınada farklı bulunamayacaktır, 88'inde farklı bulunacaktır.

Öte yandan seçkinde farklı olduğu halde, yapılan araştırımadan elde edilen verilerin analizi ile farklı olmamın gibi bir hata da yapılabilir. Bir çalışmanın gücü, seçkinde farklı olduğunu zaman bunun istatistik analizde gösterebilebileceğini, yanı saptanabilmek olsalı olsunlar olarak tanımlanabilir. Örneğin bir çalışmanın gücünün 0.85 olması, bu çalışma ile eğer seçkinde farklı varsada bunun % 85 olasılıkla saptanabileceğini anlamına gelir.

Bu araştırmaın analizini 6 tane çapraz tablo ile yapabildik (Tablo III-VIII). MI geceğinde önemli test etkisi açısından β-blokör ve kalsiyum antagonisti arasında farklı olma olabileceğini amaçla yapılan çalışmaya 80 hasta alınışı halde erkekler (n=40) ve kadınlar (n=40) olmak üzere altgruplarda analiz yapıldığı için (yani daha az sayıda hasta ile analiz yapıldığı için) çalışmanın gücü önemli derecede azaldı. Eğer araştırmanın başlandığı cinsiyetin prognoz üzerine etkisi olabileceği öngörüle ve buna göre hastalar tabakalandırılacak randomize edilsediydi. 80 hastaya yapılmış olan bu araştırımadaki istatistik analizin gücüne, aşağı yukarı 40 hasta ile yapılacaktır bir çalışmaya ulaşılabilecekti.

278
Tabakalı analizin tek sakıncaşı çalışmanın gücünün azalması değildir. İstatistikte genel ilke olarak mümkün olan en az sayıda analiz ile inceleme yapılmalıdır. Yukarıdaki örnekte hastalarla verilen ilaç, cinsiyet ve prognoz olmak üzere üç değişken arasındaki ilişkiyi 6 farklı tabloda analiz etmek yalnızca zahmetli olduğu için değil, aynı zamanda istatistiksel önemlilik enflasyonu neden olacağı için de sakınmalıdır. İstatistiksel önemlilik enflasyonu, çok sayıda analiz yapıca gerçekleştirme fark olmadığı halde fark varmış gibi sonuç elde edilmemektir. Örneğin Tablo III’ün analizi ile hesaplanan p değerinin 0.03 olması, iki ilaç arasında prognoz açısından tamamen şansa bağlı olarak fark olması olasılığının %3 olduğunu göstermektedir. Bilindiği gibi çoğu kez p değerinin 0.05’ten daha küçük olması halinde istatistiksel olarak önemli fark olduğunu söylemler. Ancak bu araştırmada çok sayıda analiz yapıldığı için her analizde hesaplanan p değerlerinin ne kadar güvenilir olduğu tartışılır hale gelecektir. Bu durumda Tablo III’ün analizi ile 0.03 olarak hesaplanan p değeri gerçekleştirme olduğundan daha küçük olarak hesaplanmış olacaktır.

Sonuçların Prognostik Etkenine Göre Standardizasyonu (Adjustment)

Adjustment ya da doğrudan standardizasyon, tabakalardaki sonuçların ağırlıklı ortalamanının kullanılamasını sağlar. Ağırlıkların seçimi, analizin amacına göre değişir.

Standardizasyonun nasıl yapıldığı şu örnekte inceleyelim:

Eğer, gruplar cinsiyet açısından dengeli olsaydı, tedavide yanıtın nasıl olacağını kes tirmek için sonuçlar standardize edilebilirdi. A ilaçları olan hastalarda gözeleme kan basıncı düşmesi 23.9 mmHg’dir. Çalışmaya alınan 150 kişiden yarısı erkek, yarısı kadın olduğuna göre, bu 150 kişiye A ilaçları verilsedi, kan basıncındaki ortalama düşme (25.4 x 0.50) + (22.4 x 0.50) = 23.9 mmHg olacaktır. Hesaplanan bu değer standardize edilmiş ortalama kan basıncı azalma miktarıdır. Bu gruptaki hastaların cinsiyetle göre dağılımı tüm grupta dağılımın aynı olup olduğu için, yanı yan yana erkek ve kadın olduğu için standardize ortalama, gözeleme ortalamanın farklı olduğu değildir. B ilaçları verilen grupta gözeleme ortalama kan basıncı düşmesi 34.0 mmHg’dir. Benzer şekilde he-

<table>
<thead>
<tr>
<th>Tablo IX. Gruplardaki Hastaların Cinsiyete Göre Dağılımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ilaç</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Erkek</td>
</tr>
<tr>
<td>Kadın</td>
</tr>
<tr>
<td>Toplam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablo X. Kan Basıncında Ortalamada Düşme Miktarı (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ilaç</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Erkek</td>
</tr>
<tr>
<td>Kadın</td>
</tr>
<tr>
<td>Genel ortalama</td>
</tr>
<tr>
<td>Standardize ortalama</td>
</tr>
</tbody>
</table>

279
saplanlığında standardize ortalama, \((22.4 \times 0.50) + (38.9 \times 0.50) = 30.6 \text{ mmHg}\) olarak hesaplanmıştır. Yanı grupta 15 erkek, 35 kadın değil de, 25 erkek, 25 kadın olsaydı, ortalama kan basıncı düşmesi 30.6 mmHg olacaktır. Plasebo grubunda ise gözlenen ortalama 4.5 mmHg, hesaplanan standardize ortalama ise \((1.2 \times 0.50) + (8.9 \times 0.50) = 5.1 \text{ mmHg}'dir. Bu üç ortalama, artık cinsiyetin etkisinden arıtılmıştır, çünkü her üçü de \%50'si erkek, \%50'si kadın olan hipotetik popülasyonlarda gözlenmesi beklenen değerlerdir.

Kontrol Değişkenlerinin Etkilerinin Artırdığı İstatistik Modeller

Gruplar arasında dengesizlik olduğu zaman kullanılabilecek bir yöntem tabakalı analiz olduğundan ve bu yöntemin sakınçalarından yukarıda söz edildi. Dikkat ederseniz, tabakalı analizde prognostik etkene göre her altgrubun analizini ayrı ayrı yaparken, analyze aldığımız hasta sayısı çalışmaya aldığı hata sayısından daha az oluyor ve buna bağlı olarak çalışmanın gücü azalıyor. Tabakalı analizin bu sakınçaları ortadan kaldıran ve sonuç üzerinde prognostik etkenlerin (kontrol değişkenlerinin) etkilerinin arttırdığı ve tedavinin "safl" etkinin belirlenebilme ve matematik modeller vardır. Bu yöntemlerle sonuç üzerine etkiyi olan etkenler (verilen ilaç, cinsiyet, hastalığın şiddet, yaş vb.) parçaları ayrı ayrı incelenir. Buna göre yukarıdaki örnekte kan basıncındaki düşme miktarının, tedavinin etkisi ve cinsiyetin etkisi ayrı ayrı hesaplanabilir.

Anstabil anına pektoriste β-bloker ve kalısyum antagonistlerini karşılaştırıldığı çalışmada tabakalı analizle iki ilaç arasında fark olmadığı, ilk bakoşta gözlenen farklı iki grup-taki hastaların cinsiyete göre dağılımları arasındaki farklı kaynaklandığı 6 farklı çapraz tablonun istatistiksel analizi ile gösterilmişdir. Ancak bu sonuca ulaşabilmek için çalışmanın gücünün azalması ve istatistiksel önemiilik enflasyonu riskini göz alımızdır. Bu araştırımda alternatif olarak log-lineer analiz yapıldığında iki tedavi grubundaki hastaların cinsiyet dağılımının benzer olması (p<0.0001), prognozun iki cinsin benzer olması (p=0.0001), ancak tedavi ile prognoz arasında ilişki olması (p=0.88) saplanmıştır. Burada üzerinde önemi du-rulması gereken nokta tedavi ile prognoz arasında ilişki olması söylenen, cinsiyetin etkisinin tamamen artırmış olmasıdır.

Prognostik etkenlerin etkilerinin artırılmasına hangi durumlarda hangi istatistik modellerin uygulanabileceğini Tablo XI'de özetlenmiştir.

Tablo XI. Kontrol Değişkenlerinin Etkilerinin Antildiği İstatistik Modeller.

<table>
<thead>
<tr>
<th>Grup sayısı</th>
<th>İzlenen değişken</th>
<th>Kontrol değişken</th>
<th>Temel analiz</th>
<th>Tabaklı analiz</th>
<th>Alternatif model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sayısal</td>
<td>Sayısal</td>
<td>T testi</td>
<td>-</td>
<td>Kovaryans analizi</td>
</tr>
<tr>
<td>2</td>
<td>Sayısal</td>
<td>Kategorik</td>
<td>T testi</td>
<td>T testi</td>
<td>İki yönlü ANOVA</td>
</tr>
<tr>
<td>2</td>
<td>Dikotom*</td>
<td>Sayısal</td>
<td>X² testi</td>
<td>-</td>
<td>Lojistik regresyon analizi</td>
</tr>
<tr>
<td>2</td>
<td>Dikotom</td>
<td>Kategorik</td>
<td>X² testi</td>
<td>X² testi</td>
<td>Log-lineer analiz</td>
</tr>
<tr>
<td>2</td>
<td>>2 düzeyli kategorik**</td>
<td>Sayısal</td>
<td>X² testi</td>
<td>-</td>
<td>Diskriminant analiz</td>
</tr>
<tr>
<td>2</td>
<td>>2 düzeyli kategorik**</td>
<td>Kategorik</td>
<td>X² testi</td>
<td>X² testi</td>
<td>Log-lineer analiz</td>
</tr>
<tr>
<td>>2</td>
<td>Sayısal</td>
<td>Sayısal</td>
<td>Tek yönlü ANOVA</td>
<td>-</td>
<td>Kovaryans analizi</td>
</tr>
<tr>
<td>>2</td>
<td>Sayısal</td>
<td>Kategorik</td>
<td>Tek yönlü ANOVA</td>
<td>Tek yönlü ANOVA</td>
<td>İki yönlü ANOVA</td>
</tr>
<tr>
<td>>2</td>
<td>Dikotom</td>
<td>Sayısal</td>
<td>X² testi</td>
<td>-</td>
<td>Lojistik regresyon analizi</td>
</tr>
<tr>
<td>>2</td>
<td>Dikotom</td>
<td>Kategorik</td>
<td>X² testi</td>
<td>X² testi</td>
<td>Log-lineer analiz</td>
</tr>
<tr>
<td>>2</td>
<td>>2 düzeyli kategorik**</td>
<td>Sayısal</td>
<td>X² testi</td>
<td>-</td>
<td>Diskriminant analiz</td>
</tr>
<tr>
<td>>2</td>
<td>>2 düzeyli kategorik**</td>
<td>Kategorik</td>
<td>X² testi</td>
<td>X² testi</td>
<td>Log-lineer analiz</td>
</tr>
</tbody>
</table>

*: Yanıt kriteri 'yanıt var-yok' ya da "öldü-yaşıyor" gibi iki sonucun ibaretse.
**: Yanıt kriteri 'yanıt tam-luşımi-yok' ya da "halfi-orta-ağır" gibi ikiden daha çok sonuç içeriyor.

ise prognostik etkenlerin önemliliğinde belirenmesi ve daha sonra yapılacak çalışmaların planlanmasında yararlı olacak veriler elde edilmesidir.

Prognostik Etken Denetim Yöntemlerinin Karşılaştırılması

Sonradan-tabakalandırma ve prognostik etkenlere göre standardizasyon birbirini tamamlayan iki yöntemdir. Sonradan-tabakalandırma ile prognostik etkenler açısından farklı olmalara karşın, grupların karşılaştırılmasını ne kadar seçerli olduğu test edilmiş olur. Standardizasyon ile sonuçların doğruluğu daha da belirginleştirilir, çalışmada daha fazla bilgi edinilmiştir olur.

Araştırmının amacı, çalışmaya alınan hastalıkdaki sonuçların tüm hastalara genelleştirilebilmesidir. Bu yazıda anlatılan randomizasyon ve prognostik etken denetim çabalarının nedeni budur.
Çapraz Gruplu Araştırmalar
Paralel çalışmalarda çalışma gruplarından birine alınan hastaya tek bir tedavi uygulanır. Çapraz çalışmalarda ise aynı hastaya iki ya da daha fazla tedavi, belirli bir plan çerçevesinde arka arkaya uygulanır.

İki antihipertansif ilacın sistolik kan basıncını üzerine etkileri dört hipertansif hastada çapraz çalışma düzeni ile araştırılır. Hastalar önce A, sonra B ilacı verilir. Tablo XII'de bu hastaların A ilacı ve B ilacı alırken sistolik kan basıncındaki düşme miktarları görülmektedir. Dört hastada dört sistolik kan basıncındaki düşmenin B ilacı ile daha fazla olduğu ve ortalamada sistolik kan basıncı düşmesi arasındaki farklı 9 mmHg ve farkın standart hatasının 1.2 mmHg olduğu görülmektedir.

Eğer Tablo XII'deki 8 ölçüm, her iki grupta 4'er hasta bulunan toplam 8 denekli bir paralel çalışmadan elde edilmiş olsaydı, sistolik kan basıncındaki düşme miktarları arasındaki fark standart hatası 1.20 değil 8.28 olacak ve iki tedavi grubu arasındaki fark istatistiksel olarak önemli olmayacaktır. (Hesaplar anlz, standart hata 8.28 olduğundan farklı %95 olasılıkta alabileceği değerlerin arasında 0, hatta negatif değerler de olduğunu göürsünüz; yani B ilacı lehine görülen 9 mmHg fark gerçek durumu çok iyi temsil etmemektedir. Oysa, çapraz çalışma düzeni- re göre hesaplanmış olan standart hata 1.20'dir ve A ile B tedavileri arasındaki fark istatistiksel olarak önemli bulunmuştur.

Ancak bu sonuçun yorumlanmasında dikkat edilmesi gereken bir konu tüm hastalar önce A, sonra B tedavisinin verilmiş olmasıdır. Yani tedavi arasında bulunan fark, "A ile B tedavileri arasında fark olduğunu" şeklinde yorumlanabileceğini gibi, hangi tedavi olsa olsun, "birincı tedavi ile ikinci tedavi arasında fark olduğunu" şeklinde de yorumlanabilir. Burada olduğunu gibi tedavilerin hangi sırayla verildiğinin önemini ekarte etmek için birinci tedavinin bitimi ile ikinci te-

Tablo XII. A Ve B İlaçlarını Alırken Gözlenen Sistolik Kan Basıncındaki Düşme Miktarı (mmHg Olarak).

<table>
<thead>
<tr>
<th>Hasta No</th>
<th>A</th>
<th>B</th>
<th>Fark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>51</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>33</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>Ortalama</td>
<td>24.75</td>
<td>33.75</td>
<td>9.00</td>
</tr>
<tr>
<td>Standart hata</td>
<td>5.70</td>
<td>6.00</td>
<td>1.20</td>
</tr>
</tbody>
</table>

*: Bir değer standart hatası ne kadar küçüklüse, o değerin o kadar iyi kesinliği anlaşılmaktadır. Dahası iki kafa kapalı bir örnek vermek gerekirse, bir değerin gerçek değeri, % 95 olasılıkça çalışmanın analizi ile hesaplanan değerden standart hata'nın iki küsi kadar büyük ya da iki kat kadar büyük değerler arasında olabileceği söylenebilir. Örneğin de çapraz çalışmada bir grup arasındaki fark 9 mmHg ve farkın standart hata 1.2 mmHg olduğuna göre, 9 mmHg olarak kesinliği farklı gerçek değerin % 95 olasılıkta 9 ± 2.4, yani 6.6 ile 11.4 mmHg arasında yer alabileceği, 6.6 dan küçük olma olasılığı % 2.5 ve 11.4'ten büyük olma olasılığını % 2.5 olup konulabilir.
davının başlangıcı arasında iki ilacın da verilmemesi bir dönem (arınma dönemi) olması ya da daha da iyisi hastaların yaşısı A, diğer yaşısı B tedavisini önce verip, arınma döneminin sonra diğer tedaviye geçmek daha doğru olacaktır.

Tedavilerin verilme srasının önemi olmamasi ve denekler arası değişkenliğin bu çalışmadağın aynı olması koşulları ile paralel çalışma düzeni ile aynı düzeyde istatistiksel önemiilik saptayabilmek için, 14 kat daha fazla denene gerek olacaktı. Yanı her iki tedavi grubunda 28'erden toplam 55 hasta gerekecekti. Değişkenliğin azalmamasını halinde bile, çapraz çalışma düzene i paralel çalışma döneminin yarısı kadar denek ile aynı istatistiksel sonucu ulaşırlır.

Nadir görülen ve uzun süreli hastalıklarla yapılan çalışmalarla yeterli sayıda hasta bulmak güç olaçağı için, çapraz çalışmalar tercih edilmiştir.

Ancak güçlü çalışmalar, potansiyel tehlikeleri de beraberinde barındırır. Paralel çapraz çalışma düzene arasında seçim yaparken ve bir çapraz çalışmaya başlamadan önce şu beş özellik dikkate alınmalıdır:

1. Tedavilerin tasarım (carry-over) ve periyod etkisi var mıdır?
2. Tedavi sırası ve hastaların gruplara seçilmesi nasıl belirlenecektir?
3. Çaprazlama kuralları nasıl olacak ve ölçümler ne zaman yapılacak?
4. Eksik veri, kontrol gereken hasta gibi veri ile ilgili sorunların ne boyutta olduğu tahmin edilekteedir?
5. Örneklemin genişliği ve uygulanacak istatistik analiz yöntemi ne olacaktır?

1. **Taşınma (carry-over) ve Periyod Etkisi**

İlk verilen tedavinin etkisi, ikinci tedavinin verildiği dönemde de devam edebilir. Buna ilacın etkisinin taşınması (carry-over), ya da taşınma etkisi (carry-over effect) adı verilir. Bunu örneklemek için ikinci ve lavidon önce bir süre ara verilmelidir. Tedaviler arasý, jaki ilaçlar geçen süreye arınma dönemi (washout period) adı verilir.

Arınma döneminin süresi, her klinik durum ve ilaç için farklı olup, araştırmacı tarafından belirlenmelidir. Bu konudaki karslari verilen ilaçın farmakokinetik özellikleri, hedef hücre, doku ya da organdaki etki süresi, ilaç kesildiken sonra hastalık bulgularının ortaya çıkma süresi, hastalarda ilaçın metabolizmasını etkileme olasılığı bulunan özellikler vb. dikkate alman chiar. Orneğin 300 mg aspirinin yari ömrü yaklaşık 2.5 saat olduğu halde, plateletler üzerine olan antiagregan etkileri irreverzibil olduğu için aspirin oranı en az ikihafta ara verilmelidir. Öte yandan uzun etkili bile olsa, bir antihipertansif ilaçın son dozundan 36-48 saat sonra kan basıncı yükselmesi başlayacağı için 4-5 günlük bir arınma dönemi yeterli olacaktır.

Çapraz çalışmalarla ilgili bir diğer sorun da tedavilerden biri ya da birkaç hastalığın doğasında kalıcı ya da çok uzun süreli değişiklikler meydana getirmesidir.

Bu nedenle çapraz çalışma düzeni akut hastalıklarla kesinlikle uygulanamaz. Çapraz çalışma düzenine en uygun hastalik grubu, diyabet, hipertansiyon gibi kronik seyri ve hangi tedavi olursa olsun, kesildiğinde makul bir süre içinde hastalık bulguları (kan şekerinde, kan basınçında yükselme gibi) ortaya çıkan hastalıklardır.

Taşınma etkisi, hastalığın seyrinin zamanla dalgalanmalar göstermesi, ilaçların hastalığın doğasında kalıcı ya da uzun etkili değişiklikler meydana getirmesi gibi durumlara genel olarak sıra etkisi (order effect) adı verilir. Yeterli uzunluğa arınma dönemi, gerekirse bir kaç dönemi çalışma planlanması, çalışma grublarındaki hastaların kronik seyiri olması gibi konulara özen gösterilerek planlanan bir çalışmmanın sonuçları üzerindeki sıra etkisi uygun istatistik modellerle, tedavi etkisinden ayrılabılır. Eğer sıra etkisi, tedavi etkisine yakın ya da daha önemli ise, her tedavinin ayrı ayrı etkilerinden söz edilemez.

Kronik refrakter immün trombositopenik purpura (ITP) steroid ve splenektomi çapraz çalışma ile karşılaştırılıyor. Hastaların yanıma (I. grup) 3 ay süreyle steroid veriliyor ve daha sonra steroid kesildikten 3 ay sonra splenektomi uygulanıyor. Diğer yanıma ise (II. grup) doğrudan splenektomye veriliyor ve splenektomiden 3 ay sonra steroid başlamıyor. Çalışma düzeni Tablo XII’te, sonuçlar Tablo XIV’te gösterilmiştir.

Tablo XIV’te görüldüğü gibi steroidden önce ya da sonra olması farketilmek zor, trombosit sayısı splenektomi ile ortalamada 50.000/mm³ artmıştır. Öte yandan ortalamada trombosit sayısı artışı, steroid splenektomiden önce verildiğinde 20.000/mm³ iken, splenektomiden sonra verildiğinde 100.000/mm³ olarak gözlenmiştir. Tedavilerin uygulanma sırası dikkate alınmadiğında her iki tedavi ile de ortalamada trombosit sayısı artışının 60.000/mm³ olduğu görülmektedir. Hangi te-

<table>
<thead>
<tr>
<th>Tablo XIII. Kronik ITP Çalışmasındaki Çalışma Düzeni.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. dönem</td>
</tr>
<tr>
<td>I. grup</td>
</tr>
<tr>
<td>II. grup</td>
</tr>
</tbody>
</table>
Tablo XIV. Kronik ITP Çalışmasında Trombosit Sayısındaki Ortalama Artma Miktarları (/mm³ Olarak)

<table>
<thead>
<tr>
<th></th>
<th>I. dönem</th>
<th>II. dönem</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. grup</td>
<td>20.000</td>
<td>60.000</td>
</tr>
<tr>
<td>II. grup</td>
<td>60.000</td>
<td>100.000</td>
</tr>
<tr>
<td>Steroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splenektomi</td>
<td>20.000</td>
<td>60.000</td>
</tr>
<tr>
<td></td>
<td>100.000</td>
<td>60.000</td>
</tr>
<tr>
<td>Ortalama</td>
<td>60.000</td>
<td>60.000</td>
</tr>
</tbody>
</table>

2. Tedavi Sırası ve Hastaların Gruplara Seçimi

Çapraz çalışma alman hastaların her biri önce tedavi gruplarında birine alınmaktadır sonra, eğer ikiden çok tedavi verilecekse, ikinci ve daha sonraki tedavileri verilme sırasi belirlenmelidir. Hastaların hepsinin tedavileri aynı sırada oldugu gibi sonuçlar karşılaştırılabilir.

Hastaların tedavi gruplarına seçimi şu dört yöntemle yapılabilir:

a. Tedavileri tüm hastalara aynı sırada vermek.

b. Tedavileri "random" sırara göre vermek.

c. Dengeli tedavi seçimi. Örneğin birinci hastaya AB, ikinci hastaya BA, üçüncü hastaya AB, yine AB, ... gibi belirli bir sira ile vermek.

3. Çaprazlama Kuralları ve Ölçüm Zamanları

Genellikle, bir tedaviden diğerine geçmek (çaprazlama) için iki kuraldan birine uyular:

a. Belirli bir sürenin sonunda (zaman-bağlı = time dependent)

b. Hastanın klinik özellikleri göre (hastalağ-bağlı = disease-state dependent)

4. Eksik Veri, Kontrole Gelemeyen Hasta Gibi Verilerle İlgili Sorunlar

Her çalışmadan verilerle ilgili sorunlar önemli olsa da, çapraz çalışmada her haste ait veriler, çalışmanın toplam verilerine oranı diğer çalışma düzenlerine göre daha fazla olduğun için, çapraz çalışmalar, başlangıçtaki plandan sapmalıdır için çok etkiler. Konunun başındaki örneğe denerk, dört hastadan birinin A tedavisi sırasında kan basancındaki düşme miyotinin ölçülmemiş olması, B tedavisi sırasındaki değeri de kullanlamaz hale

Bu nedenle çapraz çalışmalarda olası eksik veriler nedeniyle başlangıçtaki denek sayısının yerine fazla tutulmalıdır. İstatistik analize eksik verilerin de tanımlanması dahil edilebilir.

5. İstatistik Analiz ve Örnekleme

Genişliği

Aynı hastada farklı zamanlarda ölçülen değerler arasındaki değişkenlik, farklı hastalarda ölçülen değerlerin değişkenliğinden daha az olduğu için, bunu dikkate alan çapraz çalışma analizleri, daha komplike olmakla birlikte, paralel çalışma analizlerinden daha güçlüdür. En önemli, çapraz çalışma analizlerinin birim verisi, paralel çalışmalarda olduğu gibi bir hastaya ait tek bir ölçüm değil, hastanın kendisidir.

İki kez ölçülmüştü çapraz çalışmalarda, bağımlı gruplar için Student t testi kullanılır. Genel olarak çok değişkenli regresyon ve varyans analizlerinin kullanılması gerekir. Çok değişkenli analiz yöntemleri, çok sayıda t testinin sonuçlarını birleştirerek prensibine dayalıdır.

Kendi Kendine Kontrollü Çalışmalar

Asimetri

Refrakter Hastalar

Çapraz çalışmaların aksine, kendi kendine kontrollü çalışmaların önemli bir kısmında refrakter hastalığı olan denekler çalışılır. Bunun nedenlerinden en başta geleni, kendi kendine kontrollü çalışmaların, yeni ve dolayısıyla etkinliği kesin olmayan tedavileri kullanılaması ile ilgili etik sorunlardır.

Bir diğer sorun ise, "ortalama ya doğru eğilim" (regression toward the mean) dir. Ortalamaya doğru eğilim, hiç değişse bazı deneklerde başlangıçta ölçülen aşırı değerlerin tekrar ölçülmesi ile ortalamaya, yani normale daha yakın olarak bulunmasıdır. Örneğin 100 kişinin kan basıncının ölçüldüğünü ve ortalamada sistolik kan basıncının 140 mmHg olduğunu düşünün. Bir hafta sonra aynı 100 kişinin kan basıncını tekrar ölçüldüğünde yine ortalama 140 mmHg civarında bulunacaktır. Ancak kan basıncı 140 mmHg'nın biraz üzerinde olan bir kaç kişinin kan basıncının daha düşük olduğu ve 140 mmHg'nin biraz altında olan bir kaç kişinin kan basıncının ise daha yüksek olduğu görülecektir. Çünkü başlangıçta değerin aşırılığında hastalığın şiddetinin yanında "random" varyasyonun da payı olabilir. Ortalamaya doğru eğilim nedeniyle, bir kez ölçümsüz sonucunda çalışıçaya alınma kriterlerini tutturduğu düşünülen deneklerin bir kısmına hiç bir tedavi verilmesine, ölçülen değer ortalamaya yaklaştırılabilir. Bu nedenle hastaların çalışmayı alınmaya yacaklarına karar vermeden önce, hiç değişse ikinci bir kez daha ölçümler yapılmalıdır.

Diğer Tedavilerle Doğrudan Karşılaştırma Yapılmasını

Kendi kendine kontrollü çalışmalarında tek tedavi yöntemi denendiği için diğer tedavi yöntemleriyle karşılaştırma ancak diğer çalışmaların sonuçları ile yapılabilir. Farklı çalışma gruplarındanaki deneklerin demografik özellikleri, hastalıkların şiddet vb. özellikler açısından farklı olmaları nedeniyle bu karşılaştırımların ne kadar güvenilir olduğu oldukça tartışmalıdır. Bu nedenle tedavi etkililığın en objektif olarak değerlendirileceği randomize çalışma düzenlerinden biri seçilmedir.

Geleb tarihi : 20.07.1998
Yayın kabul tarihi : 24.07.1998
Yazışma adresi:
Dr. Oktay ÖZDEMİR
Omego Araştırma Organizasyon Eğitim Danışmanlık Ltd. Şti.
ANKARA