Geçmişten Günümüze Hepatit Aşları

Dr. Hakan ÖZDENER, Dr. Hakan BOYUNAĞA,
Dr. Ramazan AMANVERMEZ

Onodokuz Mayıs Üniversitesi, Tıp Fakültesi, Biyokimya Anabilim Dalı, SAMSUN

✔ Viral hepatitler akut ve kronik form olarak milyonlarca insanın sağlığını etkilemektedir. Bu hastalıklara karşı koruyuculuğu yüksek ve güvenilir aşı geliştirilmesi halkın mücadelede büyük avantaj sağlayacaktır. Bu derlemeye yazımında viral hepatitlere karşı aşı gelişimindeki gelişmeleri sunmayı amaçladık.

Anahtar kelimeler: Viral hepatit, aşı

✔ Hepatitis Vaccine: From Past to Today
Viral Hepatitis is a cause of considerable morbidity and mortality in human population both from acute infection and chronic sequence. The development and availability of safe and immunogenic vaccines, which have been shown to be highly effective, constitute a major advance in preventive medicine. This review highlights the major developments within the field of vaccines against viral hepatitis.

Key words: Viral hepatitis, vaccine

GİRİŞ
Yaygın olarak kullanılan adı ile sırık yani viral hepatitlər dünyamızda insan sağlığını en çok etkileyen viral etkenli infeksiyoz hastalıkların başında gelmektedir. Milattan önceki tarihセル metinlerde daha rastlanılan viral hepatitler, yirmibirinci yüzyıllın eşliğinde gelinmesine rağmen, her yıl milyonlarca insanın etkilemeye devam etmektedir. Viral hepatit etkeni olarak bilinen virüsler (Viral hepatit A, B, C, D, E ve G virüsü) muhtemel yeni adayların eklenmesine beklenmektedir. Hepatit virüslerinin farklı bulaşım yollarına rağmen ana hefık organı karaciğerdir. Virüsün oluşturduğu hücresel hasarın görüntüleri ve hastalığın seyri, virüsün tipine ve hastalığın evresine göre farklı olmakla birlikte, hastalığın akut tablosuna ortak özellikler hakimdir. Virüslar arasındaki başlica farklılık yayılm yolları ile ilgilidir. Şöyle ki; hepatit A ve hepatit E virüsü, hasta dışkı ile bulaşık su kaynaklarının kul

350
ekonomik kayıp olarak yılda milyarlarca doları tutmaktadır. Bu nedenlerden dolayı hepatit virüslerininoulouseştiği hastalıklara karşı tam korunmanın sağlanmasını için aşılama özel önem arz etmektedir. Ülkemizde çocukluca aş sağlaması için hepatit B aşınının karşılaşması gündeme gelmiş bu günlerde, bu yazımızda hepatit oluşumuna neden olan virüslara karşı yapılan aşı çalışmaları hakkında bilgi verilmesi amaçlanmıştır.

HEPATIT A VIRUSU (HAV)

HAV, çocuk felci virusu (poliovirus) ile aynı aile (picornavirus) içinde "hepatovirus" grubunda sınıflandırılmıştır. Hepatit A virüsü 7,5 kb uzunluğunda pozitif ilkikliki RNA (doğrudan kendi proteini sentezler) genomuna sahiptir. Olusan bu protein, viral ve hücresel proteazlar tarafından virusun "yapışsal proteinini" ve replikasyon, transkripsiyon ve translasyon gibi düzenleyici süreçlerini düzenleyen "yapışsal olmayan" proteinlere düşüştür. HAV yapışsal proteininin oluşturduğu yap. VP1, VP2 ve VP3, hayat boyu koruyucu antikor oluşuran bölgeleri içerir. Hepatitis A virüsü günümüzde deneyel şartlarda hücre kültüründe bağı ile üretilen tek hepatitis virusudur[2].

Pasif İmmünprofillaksi:

100-200 IU/I anti-HAV antikor düzeyine sahip sağlıklı yetişkin donörlerden elde edilen insan immunglobulini veya γ-globulin pasif immünprofillaksi için başlıb iri kullanılmaktadır. HAV ile karşılaşılmadan önce ve karşılaşılmadan hemen sonra immunglobulin kullanımı son derece etkili ve güvenilir olmakla birlikte sağladığı koruma yalnızca 3 ila 6 ay arasındandır. Dünyada artan yaşam düzeyi giderek bu hastalığın azalmasına yol açarken, yüksek düzeyde antikor içeren plazma bulunmasını ise giderek zorlaştırmaktadır. Ayrıca HIV gibi yeni tanınan virüsların olabileceği şebesi plazma kaynaklı pasif immünprofillaksinin kullanımı kısıtlamaktadır[3].

Cansız (inactive) Aşlar:

1978 yılında deneyel olarak infekte edilmiş marmoset maymunların karaciğerinden purifiye edilmiş formalin ile inactive edilen virüslen deneyel olarak maymunlarda koruyucu etkiye sahip olduğu gösterilmiştir. 1979 yılında HAV’un yavrusu rhesus maymunların böbrek hücre (FRhK6) kültürlerinde üretilmesi inactive aşını üretimine yeni

Canlı Attenu (zayıflatılmış) Aşalar:
İnsan diploid hücre kültüründe HAV üretilmesi attenu aşısı eldesine kapılarımıştır. Farklı izolatlar kullanılarak elde edilen attenu aşılardan insanda güvenilir ve etkili olarak kullanılabileceği gösterilmiştir.

Moleküler biyoloji ve genetik mühendisliğindeki gelişmelerle paralel olarak, attenu aşısı eldesinde diğer bir geçiş ise, HAV izolatlarında gerkeçkeştirilecek mutantların attenu aşısı elde edilmesinde son derece önemli bir rol oynamaktadır. Bu yöntemle başarı sağlanmaya çalışılan bu aşının daha ucuz, daha güvenlikli ve daha bol olarak elde edilmesine imkan tanımaktadır. Çok sayıda aşısı ve antikorların koruyucu etkisini göstermektedir. Bu aşılardan bazıları, özellikle 300 milyondan fazla aşı için seçilmişlerdir.

Rekombinant Aşalar:
Moleküler biyolojideki gelişmeler HAV’in immünobiyolojisi ve moleküler biyolojisi için yeni alanlara imkan tanıyarak deneyel rekombinant HAV aşısı geliştirmemize imkan tanımıştır. Çeşitli ekspresyon sistemleri kullanılarak HAV’in rekombinant VP1 ve VP3 yapısal bölge proteinlerinin çıkanında koruyucu antikor geliştirildiği gösterilmiştir.

Günümüzde deneyel aşı çalışmalarında kullanılarak diğer bir ekspresyon sistemi rekombinant “vaccinia virus” olup, bu sistemi kullanarak HAV’in VP1, VP2, VP3 ve VP4 bölge proteinleri elde edilmiştir. Maymunlarda gerkeçkeştirilen deneyel infeksiyonlarda bunun koruyucu antikorlar üretemecekleri gösterilmiştir. Fakat çiçek (varicella zoster virusu) aşılaması sonucunda gelişmiş olan anti-vaccinia antikorların HAV-vaccinia rekombinantını nüfus etkileyebileceğini bilinmesi için kullanılamayıktadır.

HAV’una karşı aşı geliştirilmeye diğer önemli bir nokta ise, Vaccinia virus erken ve geç p7.5 promotoru kullanılarak HAV (HM175 izolatı) tüm yapısal proteinlerinin ekspresyonunun hücre kültüründe gerkeçkeleştirilmesidir. Bu sistem infekte kısım kısmen, sadece dış kısım mevcut boğ virus elde etme imkanını sağlamaktadır. Elde edilen boğ virus taneıkları tasıdıkları koruyucu protein yapılarından dolaylı.collections aşı uygulamaları için en uygun aday olarak değerlendirilmiştir.

HEPATIT B VIRUSU

Hepatit B virusu dünyamızın önde çözümlü bekleyen en önemli sağlık problemlerinin başında gelmektedir. İki milyardan fazla insana bu virus ile karşılaştırığa tahmin edilmektedir. Çoğu gelişimde olduğu gibi, ülke insanları olmak üzere 300 milyondan fazla kişinin HBV taşıyıcısı olduğu ve her yıl 50 milyon yeni infeksiyon ve 200,000 yeni taşıyıcısı geliştığı bilinmektedir. Bunların bir kısmında siroz ve karaciğer kanseri gelişmektedir. Karaciğer kanseri gelişimine neden olduğu gösterilen ilk virustur. Kronik taşıyıcılar ortalamada 300 kat daha fazla karaciğer kans-
Plazma Kaynaklı Aşlar:

Kronik HBV taşıyıcısı olanların plazmalarında gösterilen 22 nm boyutunda sadexe HBsAg’den ibaret boş virüs parçacıklarının, maymunlarda deneySEL HBV enfeksiyonlarına karşı koruyucu etkiye sahip olduğu gösterilmesinin ardından ilk lisanlı plazma kaynaklı aşılı geliştirilmişdir. Daha sonra gerçekleştilen deneySEL HBV enfeksiyonlarında ise farklı subitplere karşı korunmanın gözlenmesi, türm tipler için koruyucu antikor üretebilecek ve S proteinini üzerindeki “a” epitopu adı verilen bölgenin varlığını göstermiştir.[7]

Rekombinant Mantar (yeast) Hücreleri
Kullanılacak Elde Edilen Aşlar:

HBV genomonun 1979 yılında klonlanması ve nükleotid dizisinin okunmasını takiben özellikle yüzey antijen HBsAg’ı içeren aşılı elde çalışmalarını başlatıldı. E. coli ekspresyon sistemlerinde elde edilen rekombinant proteinlerin özellikle “a” epitopunu doğru üçüncül yapısının sağlanamaması yüzünden koruyucu antikor eldesi sağlanmamıştır. 1982 yılında “S” bölgesini içeren HBsAg’ı bir mantar hücresi olan “Saccharomyces cerevisiae” de eksprese edildi. Bu rekombinant proteinin maymunlarda ve daha sonra insanlarda gerçekleştiilen deneySEL HBV enfeksiyonuna karşı koruyucu immünoglobulin üretmek etkiye sahip olduğu gösterildi. Bu yalnızca ilk hepatit aşısı değil, ayrıca insanlık tarihinde uygulamaya sokulan ilk rekombinant aşılı olma özelliğini taşımaktadır.[1,2]

Hepatit B virusu, "hepa, karaciğer" ve "dna, DNA virus" anlamında gelen "hepaviridae" ailesine bağlı bir virustur. Virus 3 kb uzunluğunda küçük bir genoma sahiptir. HBV genomonu 4 ayrı fonksiyona sahip protein sentezleyebilecek "Open Reading Frame" adı verilen bölge içerir. Birinci ORF “S” hepatit B yüzey antijenini HBsAg, ikinci “C”, viral çekirdek “Core”, nükleokapsid, HBeAg, üçüncü “P”, dört farklı aktiviteye sahip olan viral polimerazı ve sonuncu ORF ise “X, transaktivatör” proteini kodlamaktadır. “S” bölgesi büyük, “L, preS1+ preS2+S” bölgesinde, orta “M, preS2+S” ve küçük “S” proteini olarak üç ayrı alt gruptan oluşmaktadır.[1,2]

Memeli Hücre Kültürü Aşılı Çalışmaları:

HBV yüzey antijeninin, HBsAg, doğru üçüncül yapısının sağlanması için glikolize

Böcek (Insect) Hücre Kültürü Aşı Çalışmaları:

Bir insect (böcek) virüsü olan Baculovirüslerde HBV yüzey antijeninin klonlanması ve böcek hücre kültüründe exprasion sistemi kullanılarak yapılan çalışmalar olumlu sonuç vermiştir. Yüzey antijeni içeren bu aşısı lisans alarak klinik deneme evresine gelmiştir.

Sentetik Aşlar:

HBV "S antijeni" immünolojik olarak en iyi çalışanmış protein olup B ve T hücre epitopları içerdiği bilinmektedir. Özellikle "a epitopunu" içeren sentetik peptidler sentezlenip koruyucu antikor eldesi ile ilgili çalışmalar değişik evrelerde devam etmektedir.

Canlı Rekombinant Aşlar:

İnfeksiyoz özellikleri yok edilmiş ve HBV zarf (envelop) proteini sentezyecek gen bölgesini içeren adenovirus, vaccinia ve herpes simpleks virus rekombinantıları elde edilmiştir. Bunlardan S bölgesi içeren vaccinia virüsü insanlarda ve pre S2 + S içeren adenovirus ise maymunlarda başarı ile test edilmiştir. Ayrıca S bölge proteininin sentezleyebilecek DNA bölgesi taşıyan recombant salmonella susları kullanılarak yapılan çalışmadan olumlu sonuç alınrsa aşılamaşmayı sağlayacak yeni bir ufkı açacaktır.

Kombine Aşlar:

Vertical ve horizental bulaşma yoluna sahip HBV ile ilgili aşı çalışmalarının belkide en ilgincı çocukluk çağında uygulanan karma aşılarının içine HBV aşısında katılmaktır. Bu konuda yapılan ilk çalışmalarla dösteri, boğmaca, tetanoz karma aşısı içine katılmış HBV aşısının denenen tüm çokuklarda koruyuculuk sağladığı ve diğer aşıların etkisini değiştirmeşi göstermiştir. Bu veri bize HBV aşısı çocuk aşılama programı için rahatlıkla ilave edebileceğimizi göstermektedir.

HEPATIT C VIRUSU

HCV genomu 9.4 kb uzunluğunda pozitif iplikçikli RNA virüsü olup yaklaşık 3000 amino asid uzunluğunda protein sentezini gerçekleştirmir. HCV flaviririda virüs ailesinin henüz adlandırılmamış alt grubuna dahildir. Değişik coğrafik bölgelerden elde edilen HCV izolatlarının genom dizisi analizinde çok fazla düzensizlik saptanmıştır. Bu düzensizlik ölçü alıнакa 6 büyük genotipik ve çok sayıda küçük altgrupları (subtype) tari̇f edilmiştir.
Bu bulgu bize çok sayıda HCV serotipi olduğunu göstermektedir\(^{1,2}\).

HCV Aşı Geliştiriminde Karşılaşılan Problemler:

Kronik HBV taşıyıcısında olduğu gibi kronik HCV taşıyıcısında da çeşitli viral proteinlere karşı antikor gelişimi gösterilmiştir. Özellikle antijenik bölgeleri de içeren yüzey glikoprotein E2'nin amino son ucuna karşı gelisen antikorlar dahil olmak üzere bunların koruyuculuğunu hakkında kesin veriler elde edilememiştir. Değişik HCV izolatlarının gösterdiği genodiz xarşılığı aşılı yapımında önemüzdükleri en büyük engeldir. Ayrıca HCV'nin doku kültüründe utilizememiş olması atenue aşılı geliştirilmesini engellemektedir.

HCV Aşı Geliştiriminde Alınan Yollar:

Yukarıda bahsederken problemlerden yola çıkarak HCV aşısı eldesinde en umut verici yöntem rekombinant DNA teknojolojisi kullanılarak elde edilecek “subunit protein aşları”dur. Bu konu ile ilgili ilk çalışmalarında insan HeLa hücre kültüründe vaccinia virus ekspresyon sistemi kullanılarak elde edilen E1 ve E2 rekombinant proteinlerinin şempanzelere verilmesi ile yeterli koruyucu antikor elde edilmiştir.

Ayrıca HCV E2 ve kor proteini bölgesini içeren çiplak DNA “Naked DNA” aşısı çalışmasında umut verici sonuçlar alındığı rapor edilmiştir\(^{6,10}\).

HEPATIT D VİRUSU

Diğer hepatit virüslerinden belirgin farklılıkları mevcuttur. İklikli virüsleri içinde sınıflandırılmıştır. Hücre içinde replikasyonu için HBV infeksiyonu gereklidir. HBV'nin yüzey antijenini kendisine kapsid olarak kullanır. İnkübasyon süresi 5 hafta olup, kronik hepatit B infeksiyonu ile superinfeksiyon (hepatit B'yi takib eden) veya akut hepatit B vakalarında Hz-infeksiyon (hepatit B infeksiyonu ile birlikte) şeklinde görülür. Yüksek ölüm hızına sahiptir\(^{1,2}\).

Tek iplikçıklı halkasal 1.7 kb uzunluğunda RNA genomuna sahiptir. Yalnız başına infeksiyonu bildirilmediği için hepatit B virüsüne karşı yaplan aşılama sonunda HDV'ye karşı tam korunma sağladığı bildirilmiştir. Fakat unutulmamasi gereken nokta, kronik HBV taşıyıcılarda HBV aşısı yapılamayacağı için HDV aşının gerekli olduğu\(^{6}\).

HEPATIT E VIRUSU (HEV)

En son tariflenen barsak (enterik) geçişli hepatit etkenidir. Özellikle alt yapı tesisleri tam gelişmemiş ülkelere başla olmak üzere tüm dünyada yaygın olarak bulunmaktadır. Buluşam yok HAV ile hemen hemen aynı olmakla birlikte HAV çocukluğ çağında siklikla görülürken, HEV erişkin yaş grubunda sıkılkla görülür. Hepatit E'nin inkübasyon süresi ortalam 40 gün olup, virus özellikleri gelbliğinin son üç ayda çok yüksek oranda (%) ölüm yol açan fulminant hepatite neden olabilir. Kronikleşme bildirilmemekle birlikte vakaların %10'unda uzamış viremi (kanda virüsün varlığı) gösterilmiştir. Ayrıca endemik bölgelerde yaygın fulminant kaçaç genetikleri nedenleri arasında bir diğerdir.

HEV genomu 1990 yılında klonlanarak 7.5 kb uzunluğunda pozitif iplikçıklı RNA virüsü olduğu gösterilmiştir. Farklı coğrafik bölge izolatlarının genotipleri arasında yüksek benzerlik gösterilmiştir. Virus kapsid yapısını oluşturduğu kabul edilen ORF2 ve ORF3 adlı iki bölümler içeren "yapısal" ve metil transferaz, helikaz ve RNA bağlamı RNA polimeraz gibi virüsonun düzenleyici proteinlerini içeren "yapısal olaman" iki bölgeden oluşmuştur. Immunojenik bölgeler yapısal bölige proteinleri üzerinde bulunmuştur\(^{4,13}\). Hücre

Kaynaklar