1. Introduction
Periprosthetic fractures in patients with total hip arthroplasty were reported to occur at a rate of 0.1% (Petty, 1991). The same ratio for patients with total knee arthroplasty is 0.3-5.5% (Younger et al., 1998). In the presence of a stable total hip arthroplasty, fractures on the distal of the femoral stem are typically managed with internal fixation methods such as dynamic condylar screw plates (DCP), Condylar plates, May plates, minimal invasive plate systems with or without cables and strut allografts (Fulkerson et al., 2007). Use of these plates and allografts usually causes significant periosteal stripping because of extensile surgical approaches. This kind of the surgery has more complication rates. For decreasing complications, it has been recommended minimal invasive fixation methods which allow minimal disruption of periosteal blood supply and less blood loss. Abhaykumar and Elliott, (2000) have reported good results in a series of seven patients treated by percutaneous fixation of periprosthetic fractures with DCP. Locking plates are applied on the bone without friction between the bone and plate. The LISS (less invasive skeletal stabilisation, Synthes, Paoli, PA) plate is particularly used in patients with poor quality of soft tissue (Fulkerson et al., 2007). However, internal fixation methods are the first choice for periprosthetic femoral fractures, it is not possible to apply these methods in some conditions such as infection, poor quality of bone, the patients with general comorbidities and some configurations of the fracture. In this paper, periprosthetic femoral supracondylar fractures treated with Ilizarov method was presented in 2 cases.

2. Case 1
A 83-year-old man who was applied multiple revision arthroplasties was sustained periprosthetic fracture of the right distal femur. On plain radiographs, right supracondylar femur showed a displaced comminuted fracture distal to the stem,
which was classified as type C according to the Vancouver classification (Ninan et al., 2007) (Fig. 1a, b). The patient had been treated with right total hip arthroplasty due to osteoarthritis secondary to avascular necrosis eighteen years ago. Two months after the first operation, revision procedures had been applied in several years. Custom made type femoral prosthesis had been applied at the last revision procedure because of severe bone defects of the proximal femur.

He had bad health conditions with congestive heart failure and type II diabetes mellitus. We thought that an operation procedure could applied with significant blood loss, a long time by extensive anaesthesia, high morbidity and mortality risks. For this reason, we decided on closed reduction and external fixation of the periprosthetic fracture of the right femur, using an Ilizarov circular external fixator. The frame was preassembled before surgery three carbon rings were used for fixation and the whole frame was connected with threaded rods. The first wire was passed approximately 2.0 cm below the distal tip of the femoral stem, perpendicular to the anatomical axis of the femur. This wire was connected to the proximal ring. Another wire and a 5.0 mm half pin were also connected to the proximal ring after application procedure. Then, the closed distraction was applied to the leg manually. While the position of the fracture fragments was controlled with image intensifier, the wires and half pins were passed to the femoral condylar region and they were connected the middle ring on the femoral condyles. A transverse wire and a 5.0 mm half pin were passed the proximal tibia, and connected to the distal ring. The patient was mobilized with crutches without weight-bearing immediately after surgery. It was corrected acutely with translation construct using original Ilizarov parts. The most distal ring and its wire and half pin were removed postoperatively after one and half month. In this way, range of motion exercises of the knee was started. In addition, it was permitted partial weight-bearing at this time. When it was seen adequate callus formation on the radiographs, it was permitted full weight-bearing at the postoperative three months (Fig. 1c, d). Stable bone fusion was obtained at the postoperative six months, and the frame was removed in outpatient clinic. At the latest follow-up, 24 months after frame removal, the patient had returned to a normal life without pain and required a simple cane (Fig. 1e, f).

2. Case 2
A 74-year-old woman was sustained periprosthetic fracture of the left distal femur due to falling in the house. On plain radiographs, left supracondylar femur showed a displaced transverse fracture distal to the stem, which was classified as type C according to the Vancouver classification (Ninan et al., 2007) (Fig. 2a, b). The patient had been treated with right partial hip arthroplasty due to femoral neck fracture three years ago. She had chronic obstructive lung disease, hypertension, type II diabetes mellitus and osteoporosis. We aimed an operation that needed a short time period with negligible blood loss and stable fixation. Therefore, we chose closed reduction and external fixation with the Ilizarov method. The frame was preassembled before surgery.
Three carbon rings were used for fixation and the whole frame was connected with threaded rods. The proximal and middle carbon rings fixed the fracture of the distal femur below femoral stem and the distal carbon ring was applied on the proximal tibia for securing fracture fixation. The first wire was passed approximately 5.0 cm below the distal tip of the femoral stem, perpendicular to the anatomical axis of the femur. After this, the surgical procedure was exactly the same as the first event. The most distal ring and its wire and half pin were removed postoperatively after one and a half month. In this way, range of motion exercises of the knee was started. In addition, it was permitted partial weight-bearing at this time. When it was seen adequate callus formation on the radiographs, it was permitted full weight-bearing at the postoperative three months (Fig. 2c). Stable bone fusion was obtained at the postoperative five months, and the frame was removed in outpatient clinic. At the latest follow-up, 18 months after frame removal, the patient had returned to a normal life without pain and did not require a walking aid (Fig. 2d, e).
Blood circulation of the bone and soft tissues must be preserved as well as possible. Ilizarov method is relatively atraumatic and periosteal circulation is not disturbed (Belhan et al., 2008). In addition, it must respect to principles of biological fracture fixation. Because of the decreased gripping power of plate and screw fixation in osteoporotic bone fractures, these kind of methods can have a high failure rate, ranging from 10% to 25% (Cornell, 2003). It has been reported bad result as high as 25% of the elderly patients with supracondylar femoral fractures treated with angled blade plate (Beals and Tower, 1996; Younger, 1998).

In two cases, we used Ilizarov external fixator successfully. The Ilizarov method for a periprosthetic femoral fracture below a total hip arthroplasty has been reported by Sakai et al. (2007). They had initially applied open reduction and internal fixation for the left periprosthetic femoral fracture using a supracondylar plate system. Thereafter, they diagnosed a deep infection around the femoral fracture and removed the supracondylar plate system and applied Ilizarov external fixator for the fracture. The Ilizarov method has four advantages used for a periprosthetic femoral fracture after total hip arthroplasty (THA). First, percutaneous multiple transverse wires can be inserted in various directions and at various levels. Second, deformity at the fracture site can be corrected 3-dimensionally using hinge parts. In the present study, a valgus deformity was corrected, although displacement remained. Third, there is little risk of surgical damage or transfusion. And fourth, early full-weight bearing leads to callus formation by micromotion of the fracture site (Sakai et al., 2007). They chose the Ilizarov method because of a deep infection which has developed open reduction internal fixation using a supracondylar plate system. Whereas, we preferred the Ilizarov method for two cases with periprosthetic supracondylar femoral fractures as the first choice. Besides, there was no infection finding for two cases.

For the Ilizarov method, main fear is transformation from pin tract infection to prosthesis infection. Periprosthetic femoral fractures are challenging cases and demanding to treat. The Ilizarov method provides a superior alternative for the surgical management of these fractures with poor local and general factors. It should be especially considered when classical treatment methods have important disadvantages. We preferred the Ilizarov method for two cases. Because, they have additional medical problems, poor bone quality and high anaesthesia risks. The rate of success of internal fixation with osteoporotic bone fractures is lower than the Ilizarov method. Mechanical failures are higher with internal fixation methods. Whereas, the Ilizarov method is more advantageous due to multidirectional wire and half pin fixations for osteoporotic bone fractures.

REFERENCES


