Diagnostic value of apparent diffusion coefficients to differentiate benign and malignant breast lesions

Ahmet Veysel POLAT, Adile OZBAY, Ramazan AYDİN, Kerim ASLAN, Ilkay Koray BAYRAK
2.142 596

Abstract


The role of magnetic resonance diffusion-weighted imaging (DWI) to differentiate between malignant and benign lesions in the breast using mean apparent diffusion coefficient (ADC) values was evaluated prospectively in this study. Fifty female patients with 61 histopathologically proven solid breast lesions underwent dynamic contrast-enhanced magnetic resonance imaging and DWI using the spin-echo echo-planar technique. ADC maps have been obtained and ADCs of the lesions were calculated without knowledge of histopathological diagnosis. Golden standard was histology to define benign and malignant lesions. Statistical analysis was used to compare ADC values in the benign and malignant group and to calculate best cut-off value for distinguishing both groups based on receiver operator-curve characteristics (ROC). Differentiation of the benign and the malignant masses revealed that the threshold value of the ADC in maximum sensitivity and specificity was 1.22×10-3 mm2/s; at this threshold sensitivity was 96.2%, its specificity was 88.5%, and its positive predictive value was 86.2%. Its negative predictive value was 96.9%, and the accuracy rate was 91.8%. ROC analysis showed an area under the curve of 0.924 (p<0.001). Breast MRI with DWI using ADC measurements can be useful in the differentiation of benign and malignant breast lesions.

J. Exp. Clin. Med., 2013; 30:305-310

Keywords


Apparent diffusion coefficient; breast; diffusion weighted imaging; magnetic resonance imaging

Full Text:

305-310


DOI: http://dx.doi.org/10.5835/jecm.omu.30.04.005

References


Baltzer, P.A., Benndorf, M., Dietzel, M., Gajda, M., Camara, O., Kaiser, W.A., 2010. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur. Radiol. 20, 1101-1110.

Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR. Biomed. 15, 435-455.

Bird, R.E., Wallace, T.W., Yankaskas, B.C., 1992. Analysis of cancers missed at screening mammography. Radiology. 184, 613-617.

Brem, R.F., Baum, J., Lechner, M., Kaplan, S., Souders, S., Naul, L.G., Hoffmeister, J., 2003. Improvement in sensitivity of screening mammography with computer-aided detection: A multiinstitutional trial. Am. J. Roentgenol. 181, 687-693.

Englander, S.A., Ulug, A.M., Brem, R., Glickson, J.D., van Zijl, P.C., 1997. Diffusion imaging of human breast. NMR. Biomed. 10, 348-352.

Fornasa, F., Pinali, L., Gasparini, A., Toniolli, E., Montemezzi, S., 2011. Diffusion-weighted magnetic resonance imaging in focal breast lesions: Analysis of 78 cases with pathological correlation. Radiol. Med. 116, 264-275.

Goergen, S.K., Evans, J., Cohen, G.P., MacMillan, J.H. 1997. Characteristics of breast carcinomas missed by screening radiologists. Radiology. 204, 131-135.

Guo, Y., Cai, Y.Q., Cai, Z.L., Gao, Y.G., An, N.Y., Ma, L., Mahankali, S., Gao, J.H., 2002. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J. Magn. Reson. Imaging. 16, 172-178.

Hamstra, D.A., Rehemtulla, A., Ross, B.D., 2007. Diffusion magnetic resonance imaging: A biomarker for treatment response in oncology. J. Clin. Oncol. 25, 4104-4109.

Hatakenaka, M., Soeda, H., Yabuuchi, H., Matsuo, Y., Kamitani, T., Oda, Y., Tsuneyoshi, M., Honda, H., 2008. Apparent diffusion coefficients of breast tumors: Clinical application. Magn. Reson. Med. Sci.7, 23-29.

Hosseinzadeh, K., Schwarz, S.D., 2004. Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J. Magn. Reson. Imaging. 20, 654-661.

Iacconi, C., 2010. Diffusion and perfusion of the breast. Eur. J. Radiol. 76, 386-390.

Kim, T., Murakami, T., Takahashi, S., Hori, M., Tsuda, K., Nakamura, H., 1999. Diffusion-weighted single-shot echoplanar MR Imaging for liver disease. Am. J. Roentgenol. 173, 393-398.

Kinoshita, T., Yashiro, N., Ihara, N., Funatu, H., Fukuma, E., Narita, M., 2002. Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: Differentiation of invasive ductal carcinoma from fibroadenoma. J. Comput. Assist. Tomogr. 26, 1042-1046.

Kolb, T.M., Lichy, J., Newhouse, J.H., 2002. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of the factors that influence them: An analysis of 27.825 patient evaluations. Radiology. 225, 165-175.

Kul, S., Cansu, A., Alhan, E., Dinc, H., Gunes, G., Reis, A., 2011. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. Am. J. Roentgenol. 196, 210-217.

Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., Laval-Jeantet, M., 1988. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 168, 497-505.

Lo, G.G., Ai, V., Chan, J.K., Li, K.W., Cheung, P.S., Wong, T.T., Ma, M., Lee, R., Chien, D., 2009. Diffusion-weighted magnetic resonance imaging of breast lesions: First experiences at 3 T. J. Comput. Assist. Tomogr. 33, 63-69.

Luo, J.D., Liu, Y.Y., Zhang, X.L., Shi, L.C., 2007. Application of diffusion weighted magnetic resonance imaging to differential diagnosis of breast diseases. Chinese Journal of Cancer. 26, 168-171.

Marini, C., Iacconi, C., Giannelli, M., Cilotti, A., Moretti, M., Bartolozzi, C., 2007. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur. Radiol. 17, 2646-2655.

Martincich, L., Deantoni, V., Bertotto, I., Redana, S., Kubatzki, F., Sarotto, I., Rossi, V., Liotti, M., Ponzone, R., Aglietta, M., Regge, D., Montemurro, F., 2012. Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur. Radiol. 22, 1519-1528.

Moteki, T., Ishizaka, H., 2000. Diffusion-weighted EPI of cystic ovarian lesions: Evaluation of cystic contents using apparent diffusion coefficients. J. Magn. Reson. Imaging. 12, 1014-1019.

Norris, D.G., 2001. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR. Biomed. 14, 77-93.

O’Flynn, E.A.M., Morgan, V.A., Giles, S.L., deSouza, N.M., 2012. Diffusion weighted imaging of the normal breast: Reproducibility of apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status. Eur. Radiol. 22, 1512-1518.

Park, M.J., Cha, E.S., Kang, B.J., Ihn, Y.K., Baik, J.H. 2007. The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J. Radiol. 8, 390-396.

Park, S.H., Moon, W.K., Cho, N., Song, I.C., Chang, J.M., Park, I.A., Han, W., Noh, D.Y., 2010. Diffusion-weighted MR imaging: Pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology. 257, 56-63.

Partridge, S.C., McKinnon, G.C., Henry, R.G., Hylton, N.M., 2001. Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. J. Magn. Res. Imaging. 14, 433-438.

Partridge, S.C., Mullins, C.D., Kurland, B.F., , Allain, M.D., DeMartini, W.B., Eby, P.R., Lehman, C.D., 2010.Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: Effects of lesion type and size. Am. J. Roentgenol. 194, 1664-1673.

Peters, N.H., Borel Rinkes, I.H., Zuithoff, N.P., Mali, W.P., Moons, K.G., Peeters, P.H., 2008.Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology. 246, 116-124.

Robertson, C.L., 1993. A private breast imaging practice: Medical audit of 25.788 screening and 1.077 diagnostic examinations. Radiology. 187, 75-79.

Rubesova, E., Grell, A.S., De Maertelaer, V., Metens, T., Chao, S.L., Lemort, M., 2006. Quantitative diffusion imaging in breast cancer: A clinical prospective study. J. Magn. Reson. Imaging. 24, 319-324.

Shin, H.J., Kim, H.H., Kim, S.M., Kwon, G.Y., Gong, G., Cho, O.K. 2008. Screening-detected and symptomatic ductal carcinoma in situ: Differences in the sonographic and pathologic features. Am. J. Roentgenol. 190, 516-525.

Sinha, S., Lucas-Quesada, F.A., Sinha, U., DeBruhl, N., Bassett, L.W. 2002. In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization. J. Magn. Reson. Imaging. 15, 693-704.

Sonmez, G., Cuce, F., Mutlu, H., Incedayi, M., Ozturk, E., Sildiroglu, O., Velioglu, M., Bashekim, C.C., Kizilkaya, E., 2011.Value of diffusion- weighted MRI in the differentiation of benign and malign breast lesions. Wien. Klin. Wochenschr. 123, 655-661.

Tsushima, Y., Takahashi-Taketomi, A., Endo, K., 2009. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J. Magn. Reson. Imaging. 30, 249-255.

Wenkel, E., Geppert, C., Schulz-Wendtland, R., Uder, M., Kiefer, B., Bautz, W., Janka, R.,2007. Diffusion weighted imaging in breast MRI: Comparison of two different pulse sequences. Acad. Radiol. 14, 1077-1083.

Woodhams, R., Kakita, S., Hata, H., Iwabuchi, K., Umeoka, S., Mountford, C.E., Hatabu, H., 2009. Diffusion-weighted imaging of mucinous carcinoma of the breast: Evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. Am. J. Roentgenol. 193, 260-266.

Woodhams, R., Kakita, S., Hata, H., Iwabuchi, K., Kuranami, M., Gautam, S., Hatabu, H., Kan, S., Mountford, C., 2010. Identification of residual breast carcinoma following neoadjuvant chemotherapy: Diffusion-weighted imaging comparison with contrast-enhanced MR imaging and pathologic findings. Radiology. 254, 357-366.

Woodhams, R., Matsunaga, K., Kan, S., Hata, H., Ozaki, M., Iwabuchi, K., Kuranami, M., Watanabe, M., Hayakawa, K., 2005. ADC mapping of benign and malignant breast tumors. Magn. Reson. Med. Sci. 4, 35-42.

Yabuuchi, H., Matsuo, Y., Kamitani, T., Setoguchi, T., Okafuji, T., Soeda, H., Sakai, S., Hatakenaka, M., Kubo, M., Tokunaga, E., Yamamoto, H., Honda, H., 2010. Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur. J. Radiol. 75, 126-132.

Yabuuchi, H., Matsuo, Y., Okafuji, T., Kamitani, T., Soeda, H., Setoguchi, T., Sakai, S., Hatakenaka, M., Kubo, M., Sadanaga, N., Yamamoto, H., Honda, H., 2008. Enhanced mass on contrast-enhanced breast MR imaging: Lesion characterization using combination of dynamic contrast- enhanced and diffusion-weighted MR images. J. Magn. Reson. Imaging. 28, 1157-1165.

Yamashita, Y., Namimoto, T., Mitsuzaki, K., Urata, J., Tsuchigame, T., Takahashi, M., Ogawa, M., 1998. Mucin-producing tumor of the pancreas: Diagnostic value of diffusion-weighted echo-planar MRI imaging. Radiology. 208, 605-609.

Yankaskas, B.C., Cleveland, R.J., Schell, M.J., Kozar, R., 2001. Association of recall rates with sensitivity and positive predictive values of screening mammography. Am. J. Roentgenol. 177, 543-549.

Yoshikawa, M.I., Ohsumi, S., Sugata, S., Kataoka, M., Takashima, S., Mochizuki, T., Ikura, H., Imai, Y., 2008.Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat. Med. 26, 222-226.